Status of the T2K experiment

Yury Kudenko Institute for Nuclear Research, Moscow (For the T2K Collaboration)

ICHEP'06, Moscow, 28 July 2006

Neutrino mixing

Flavor

v oscillations in accelerator experiments

K2K final

MINOS, Neutrino'06

LBL accelerator experiments

precise measurement of mixing parameters value of θ_{13} CP violation in lepton sector mass spectrum: normal or inverted

2nd generation: T2K, NOVA...

ICHEP'06

T2K (Tokai to Kamioka)

11 countries, 58 institutions, ~200 collaborators

v beam off-axis on-axis

	JPARC	MINOS	K2K
E(GeV)	50	120	12
Int(10 ¹² ppp)	330	40	6
Rate (Hz)	0.29	0.53	0.45
Power (MW)	0.77	0.41	0.0052

ICHEP'06

400 MeV Linac (200 MeV) 1 MW 3 GeV RCS 0.75 MW 50 GeV MR (30GeV)

- small contamination of v_e

 PID at SK μ/e identification background suppression in ν_e search (K2K)

ICHEP'06

CC quasi elastic scatterings $v_{\mu} + n \rightarrow \mu + p$ ν SK 1489.2davs Sub-GeV 1rin u-like e-like -2 2 4 8 -8 -6 -4 0 6 PID likelihood

 v spectrum at SuperK predicted by correction of v spectrum at Near Detector (ND280m) by Far/Near ratio

- Search for sterile components by NC events

T2K beam line

Components

- Primary proton beam line
 - Normal conducting magnets
 - Superconducting arc
 - Proton beam monitors
 - Target/Horn system
- Decay pipe
- Beam dump
- > muon monitors
- Near neutrino detector (ND280m)

Special Features Superconducting combined function magnets Off-axis beam

Target and horn magnets

1400

2000

472

006

I=320kA

Graphite target Prototype

- thermal shock resistant to 0.75 MW
- He-gas cooling system

Production of 1, 2, 3 Horns Installation

1st Horn | 2nd Horn

1st Horn excitation Operation at 320 kA

May 2006 July 2006 2007 2008

Requirements for Near Detectors

Predictions of v flux and interactions at Far Detector

Profile of v beam \rightarrow determination of off-axis angle (on-axis detector) v_{μ} and v_{e} fluxes, charged current processes (tracking detectors) π^{0} production cross sections (Pi-Zero, Ecal)

Neutrino spectrum at Far Detector is predicted by correction of neutrino spectrum at ND280 by Far/Near ratio

Neutrino flux measurement at ND280 with accuracy 5%

 $v_{\mu} n \rightarrow \mu^{-} p$ CCQE $E_{\mu} \leq 1 \text{GeV}, \theta_{\mu} = 0 - 180 \text{ deg}$ Muon momentum scale uncertainty - 2% Fermi motion \rightarrow Muon momentum resolution - 10% μ^{+}/μ^{-} identification Detection of recoil protons Charged pion measurement Measurement of v_{e} contamination with 10% uncertainty Measurements of neutrino interactions in water target Neutrino beam direction accuracy <<1 mrad

Near Detectors at 280 m

ND280m off-axis detector

Conceptual design

- UA1 magnet

 0.2 T
 inner volume:
 3.5×3.6×7.0 m³
- Pi-Zero optimized for π⁰ from NC
- Tracker optimized for CC studies
- surrounded by ECAL and Side Muon Range Detector

ND280m tracker

solid active (+ water) target modules (FGD) gas time projection chamber modules (TPC)

Requirements: $\sigma(p)/p < 10$ % at 1 GeV/c dE/dx capability: separate e from μ

- 6 read-out planes (0.7x2.0 m²)
- Maximum drift distance 1.0 m
- B=0.2 T E=200V/cm
- Pad size: 0.6 to 0.8 cm
- ~100k channels

Gas amplification Micromegas

THREE TPC MODULES WITH TWO FGD UNITS FOR THE ND280 EXPERIMENT

FGD

Two FGD's

1st: x-y layers of scintillators2nd: water rich detector

Size of FGD 192 cm x 192 cm x 30 cm with 1cm x 1cm scintillator bars Total weight 1.2 ton / FGD Thickness 0.3 m to make particles get out of FGD into TPC, especially for pions, to measure their momentum before interacting with materials Cell size 1 cm Beam 120MeV/c-SiPM 1810-002, Bias=53V lower particle detection threshold Black-electrons oelectrol for protons down to 200 MeV/c 35 Red-muons Green-pions WLS fiber Y11, one end Readout 30 by multi-pixel Si APD's .45 4 3 cm passive water layers 1 Back FGD 20 between each x-y sci. planes 4 Future upgrade 15 water-based scintillator 40 80 100 120 140 160 180 200

Pj-Zero Detector (POD)

NC π^0 measurement v_e contamination

Total mass ~19 t Fiducial ~6 t H₂O target ~1.7 t

- 1.7 x 10⁴ NC single π^0 events in water target for 10²¹ POT
 - efficiency for π^0 reconstruction 50-60%

Yury Kudenko

ICHEP'06

Barrel

DownStream

Photosensors

ND280m: ~ a few 10⁵ m WLS fibers individual fiber readout magnetic field and limited space

> 10⁵ photosensors

Compact multi-pixel Si APD's operating in limited Geiger mode

MPPC (Hamamatsu,Japan) 100/400 pixels

nm

MRS APD (CPTA, Moscow) 556 pixels

mm

Yury Kudenko

ICHEP'06

ICHEP'06

Far Detector SK-III

Detector at 2 km

Liquid Argon Detector exclusive final states frozen water target Water Cherenkov Detector Same detector target/technology as SK ~ 1 interaction/spill/1kton Muon Ranger Measure high energy tail of neutrino spectrum

v spectrum at 2 km
similar to
v spectrum at SK
without oscillations

smaller uncertainties of Far/Near ratio

possible future extension of the T2K complex

Sensitivity ve appearance

5×10²¹ POT $\Delta m_{23}^2 = 2.5 \times 10^{-3} \sin^2 2\theta_{23} = 1 \sin^2 2\theta_{13} = 0.1$

	ν_{μ} CC BG	ν_{μ} NC BG	beam ν_e BG	$\nu_e CC$ signal
Fully-contained, $E_{vis} \ge 100 \text{MeV}$	2215	847	184	243
1 ring e-like, no decay-e	12	156	71	187
$0.35 \le E_{\nu}^{rec.} \le 0.85 \text{GeV}$	1.8	47	21	146
e/π^0 separations	0.7	9	13	103

ICHEP'06

Sensitivity v_µ disappearance

Fiducial volume fully-contained, $\mu\text{-like},~\text{E}_{\text{vis}}\text{>}30~\text{MeV}~\text{events}$ at SK for 5×10²¹ POT

$\Delta m^2 ({\rm eV^2})$	CC-QE	CC-nonQE	NC	All ν_{μ}
No oscillation	3,620	1,089	96	4,805
$2.0 imes 10^{-3}$	933	607	96	1,636
$2.3 imes 10^{-3}$	723	525	96	1,344
$2.7 imes 10^{-3}$	681	446	96	1,223
$3.0 imes10^{-3}$	800	414	96	1,310

Stat errors

 $\Delta m^2 (x10^{-3} \text{ eV}^2)$

 $\sin^2\theta_{23} = 1 \Delta m^2_{23} = 2.7 \times 10^{-3} \, eV^2$

ICHEP'06

sin² 20 statemor 0

10

Schedule

Beam line construction started in April 2004 Start of ND280m detectors manufacturing ND280 hall construction start UA1 magnet installation Complete ND280 building 50 GeV MR commissioning Begin installation of ND280 detectors Neutrino beam line commissioning T2K physics run on schedule Fall 2006 April 2007 May 2008 December 2008 2008 January 2009 April 2009 2009

T2K: second generation long baseline experiment capitalizes on experience of SuperK and K2K

Main features: off-axis intensive v_{μ} beam from JPARC, SuperK and Near Detector Complex

Main goals: search for $\nu_{\mu} \rightarrow \nu_{e}$ and measurement of θ_{13} precise measurement of Δm^{2}_{23} and θ_{23}

Neutrino beam is scheduled to start on 1st April 2009